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A B S T R A C T

In this paper we present novel methodology for automatic anomaly and switch event filtering to improve
load estimation in power grid systems. By leveraging unsupervised methods with supervised optimization,
our approach prioritizes interpretability while ensuring robust and generalizable performance on unseen data.
Through experimentation, a combination of binary segmentation for change point detection and statistical
process control for anomaly detection emerges as the most effective strategy, specifically when ensembled
in a novel sequential manner. Results indicate the clear wasted potential when filtering is not applied. The
automatic load estimation is also fairly accurate, with approximately 90% of estimates falling within a 10%
error margin, with only a single significant failure in both the minimum and maximum load estimates across
60 measurements in the test set. Our methodology’s interpretability makes it particularly suitable for critical
infrastructure planning, thereby enhancing decision-making processes.
1. Introduction

The global energy landscape is undergoing a transformative shift
towards sustainability, driven by the urgent need to mitigate climate
change and reduce reliance on fossil fuels [1]. This process, more
commonly known as the energy transition, presents a multitude of
challenges that must be addressed to achieve a successful energy tran-
sition. These challenges encompass technical, economic, social, and
political aspects, demanding innovative solutions and collaborative
efforts on a global scale [2]. One of the key bottlenecks in implementing
the energy transition in the Netherlands is the growth of electrical
infrastructure [3]. In order to replace fossil fuel energy sources, the
capacity of the power grid needs to increase significantly. However,
increasing the capacity of the power grid involves several challenges.
Due to a scarcity of resources [4] identification of key areas where
additional capacity is most needed is imperative.

In addition to the need for additional capacity, the way the grid
is being used is also changing [5]. Due to the increasing reliance on
solar and wind energy, the centralized production of energy is a fading
paradigm. Decentralized production in the form of a multitude of wind
and solar parks, as well as solar panels covering a large percentage
of urban housing, are changing the ways in which electricity is dis-
tributed [6,7]. Where previously gas was the primary source of heating
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in houses, heat pumps are increasingly being used in households [8].
Electrical cooling of houses has seen a substantial increase in recent
years [9]. Electric motors are quickly replacing fossil fuel combustion
engines in personal vehicles [10]. These vehicles are now often charged
at home, at the workplace, or near other hubs [11]. These changing
requirements drive a need to expand the power grid in a smart manner,
where expansion is done there where it is most needed in the near
future.

Next to expansion, smarter use of the existing grid is essential.
This can be done through for example flexible energy contracts, the
use of redundant grid capacity for power generation, and the use of
batteries [12]. Better insight into grid usage over time is needed to
facilitate these changes. With more measurements this can be achieved,
but this means also more data that needs to be cleaned before it can be
used for analysis.

In order to determine key points of expansion, an accurate overview
of the current state of grid capacity needs to be made. In this study, we
specifically study primary substation-level measurements on the Dutch
power grid managed by Alliander. In order to know what percentage
of a primary substation’s capacity is being used, accurate estimates
of the minimum and maximum load of the subgrid that substation
supplies must be made. This process is more commonly known as
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demand modeling [13]. Primary substation-level time series load mea-
surements, however, cannot be directly interpreted without giving a
distorted view. These measurements are contaminated with anomalies,
for example caused by measurement errors, and with switch events. In
a switch event power from different primary substations is rerouted to
or from part of the measured primary substation’s route. An example
of this can be found in Fig. 1, where due to a cable failure power is
rerouted from primary substation 1 to supply secondary substations E
and F. Rerouting power reduces the blackout time in case of damage
to a cable in the power grid, and is possible when the grid is suffi-
ciently redundant to circumvent the broken cable. Switch events can
also happen when long-term maintenance is performed on a primary
substation or any its cables or secondary substations. Switch events can
have a large range of possible lengths, from a few minutes, to multiple
months, depending on how fast the underlying problem is resolved.
Both of these, measurement errors, which we will call anomalies, and
switch events, need to be filtered out to get an accurate estimate of the
load profile. This more accurate load profile can be used directly for
more optimized usage of the grid. It can then be used to find the true
minimum and maximum load of the substation under normal operating
conditions, so the redundancy capacity can be added separately. The
task of detecting which parts of a load measurement represent the
normal situation can be seen as a time-series segmentation task.

Traditionally, these load measurement are manually segmented and
nnotated by domain experts within the Alliander organization. This
rocedure is however extremely time consuming, and produces anno-
ations with a high percentage of label noise. This label noise is of
ittle concern in determining the minimum and maximum loads, as
he annotation procedure is generally optimized in such a way that
hese loads are as accurate as possible. The resulting annotation can
owever not be used for other purposes such as year-round usage
nsights. An automated annotation procedure, capable of producing
igh-quality annotations, can therefore both free up valuable domain
xpert time, as well as allow for detailed studies on load measurement
ata previously unfeasible. Because economically and logistically vital
ecisions are made based on these load estimates, it is extremely
mportant that any machine learning model automating this procedure
s highly interpretable.

For smart grids, change point and anomaly detection algorithms
ave been broadly applied. Zhang et al. [14] describe multiple time-
eries anomaly detection algorithms used in various applications across

smart grids. They differentiate between point, contextual, and pattern
nomalies. Thomas et al. [15] describe a novel method tailored to
etecting islanding. In addition to islanding, their method, which uses
-means clustering and empirical mode decomposition, is able to detect
oad switch events and other faults. Neagoe et al. [16] used change
oint detection in order to detect multi-year patterns in hydropower

generation in Romania. Wang and Ahn [17] combine a regression-based
anomaly detection model with SVM, 𝑘NN and a cross-entropy loss
function to detect anomalies in a Tanzanian solar power plant. Wang
et al. [18] present methodology for simultaneously performing load
orecasting and semi-supervised anomaly detection and apply it to the

UCI electric load dataset. They report higher specificity and sensitivity
than neural network-based methods, but find similar F1 scores. For
shorter time series, Rajabi et al. [19] have compared various clustering

ethods for load pattern segmentation.
Load estimation has been performed across a variety of use cases

within power grid operation and study. Heslop et al. [20] have esti-
mated maximum photovoltaic generation for residential low voltage
feeders. Mendes et al. [21] estimate the variability of the load, using
raph signal processing, on data with a high level of distributed gener-

ation, similar to the situation in the Netherlands. Langevin et al. [22]
mploy variational autoencoders for short-term forecasting of the load
ithin households. Kara et al. [23] use multiple linear regression to

disaggregate the solar generation in regular feeder measurements in
order to get separate estimates for generation and production. Asefi
2 
et al. [24] perform a combination of statistical modeling, anomaly
detection and classification in order to estimates states and identify
false data injection.

However, to the best of our knowledge, for time series, of a year
or longer in length, where event lengths vary substantially, no studies
have been conducted on load estimation through means of automated
segmentation.

2. Materials and methods

2.1. Data

In this study we optimize and evaluate our algorithms for anomaly
and switch event detection on a total of 180 primary substation load
measurements. Most primary substation measurements span a full year
in length, and provide measurements at regular 15-min intervals of the
apparent power 𝑆, which we will refer to as load. We calculate 𝑆 from
the active power 𝑃 and the reactive power 𝑄 and assign it the sign of 𝑃 ,
𝑆 = 𝑠𝑖𝑔 𝑛(𝑃 ) ∗

√

𝑃 2 +𝑄2. In some cases, the measurement equipment
of a primary substation does not allow for accurate measurements of
both 𝑃 and 𝑄. In these cases, 𝑆 is calculated from 𝑆 =

√

3 ∗ 𝑉 ∗ 𝐼 . The
√

3 term originates from the fact that in a 3-phase system the phase
voltage rather than the line voltage is used.

At each 15-min interval over which the load is measured, we
lso calculate the so-called bottom-up load 𝐵 throughout the subgrid
upplied by that specific primary substation. The bottom-up load is an

estimation of the load over a certain primary substation, but not a direct
measurement, like 𝑆. Thus, the bottom-up load is directly related to
the actual load measurement. The bottom-up is traditionally used by
distribution system operators to get an estimate of load on the grid on
places where no measurements are available. This bottom-up estimate
tries to reconstruct the total load based on telemetry measurements
from bulk consumers, from aggregated smaller scale measurements,
and from average profiles based on smart meters at consumers’ homes
and some smaller bulk consumers. In the latter machine learning is
used to estimate the load profiles of those consumers that do not have
a smart meter, or have not consented to have their smart meter data
ead [25]. In order to acquire the final bottom-up load, Alliander uses

the SunDance algorithm [26] for disaggregation of net consumption
and generation, 𝑘-means clustering [27,28] for generating load pro-
iles, and XGBoost [29] for determining which clustered load profiles

should be used instead of missing smart meter measurements [25].
More details regarding the bottom-up generation methodology can be
found in [25]. Most often, the bottom-up load is fairly accurate. Most
ailure cases are not caused by the algorithm, but rather by incorrect
rid-topology data, causing consumers to be wrongfully included or

excluded.
In order to discern between a primary substation connection that is

et consuming or net producing, the load measurements 𝑆 are given
a sign based on 𝑃 . If a primary substation connection is consuming
more than it is producing, the load measurement is assigned a positive
ign. A negative sign therefore means that the primary substation is
et producing. However, not all primary substations are outfitted with
easurement equipment to determine whether the primary substation

is net producing or consuming: they just measure the absolute cur-
ent 𝐼 , thus the sign needs to be corrected later on. The bottom-up
oad, in contrast to the actual load, can always be measured in the
egative due to being based on more recent, lower-level, measuring
quipment. We will use this property in correcting the sign of the load
easurement. Bottom-up load measurements are furthermore based on
measurements and load estimates so they never have a missing sign.

 typical primary substation measurement time series, consisting out
of the load (𝑆), the bottom-up load, and an illustrative example of the
needed minimum and maximum capacity is shown in Fig. 2, where it
should be noted that this measurement does not contain anomalies or
switch events. In this figure we can additionally see the minimum and
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Fig. 1. An illustration of a switch event. The diamonds numbered 1 and 2 indicate two primary substations. The squares named A-F indicate secondary substations. The circle
named X indicates a switch. Solid lines indicates connections between substations, and dashed lines indicate connections to other substations outside of the figure. The primary
substation and the secondary substations powered by it are colored light blue or light yellow for primary substations 1 and 2 respectively. When a switch event occurs, for example
due to cable failure between secondary substations D and E, power will be supplied from primary substation 1 rather than 2. This is indicated by the switch X color change from
red to green. This leads to a temporary increase in apparent power measured at 1 and a decrease at 2, as illustrated with the apparent power measurements as a function of time
at the bottom of the figure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
maximum loads (𝑆) that are vitally important for the planning of grid
expansion. On top of the maximum or minimum load, there should be
enough redundant capacity in order to allow for rerouting in case of
grid failures. All remaining capacity is unused, and quantification of
this unused capacity is essential for determining whether the capacity
of a station should be expanded, or whether there is room for additional
customers. Should anomalies or switch events be present, we expect
to see these minimum and maximum values be inflated or deflated,
leading to inaccurate estimates of the unused capacity of a primary
substation, thereby interfering with power grid expansion planning. An
example of wrong capacity estimates leading to unused capacity can be
found in Fig. 3

To summarize, at each 15-min interval 𝑡 for each station 𝑖 we
measure the load 𝑠𝑖𝑡 and estimate the bottom-up load 𝑏𝑖𝑡. We do this
for a full year of measurements, yielding for each station 𝑖 a load
vector 𝐬𝑖 ∈ 𝑆, and a bottom-up load vector 𝐛𝑖 ∈ 𝐵, where 𝑆 and
𝐵 respectively now denote the full collections of load and bottom-up
vectors as measured for each of the 180 measured stations. In order to
allow for evaluation of automatic segmentation and anomaly detection
algorithms, each 15-min measurement 𝑦𝑖𝑡 has additionally been labeled,
leading to a detailed labeled segmentation of each time series for each
station 𝑖, 𝐲𝑖 ∈ 𝑌 , which we will treat as our gold standard. Possible
values for this label are: 0 (no anomaly or switch event); 1 (anomaly or
switch event); 5 (the labeler is uncertain whether this should be label
0 or 1). For simplicity, the dependence of vectors 𝐬, 𝐛 and 𝐲 on index
of the station 𝑖 will be omitted throughout the remainder of this paper,
and will only be mentioned explicitly when necessary.

The time series of all primary substations show great variation, both
within a primary substation, but also between primary substations. The
average load for a primary substation can range from 100’s to 10,000’s
of kilowatts. In addition, not all bottom-up loads are equally accurate
for each primary substation. This variability leads to a challenging
segmentation task.

2.1.1. Event-length categories
We use a variety of measures to judge the quality of the time

series segmentation, see Section 2.4.1. Generally, these measures are
3 
calculated over all individual time points. This can be done when the
segments are of somewhat similar length. In this use case however,
anomalies are very short events, while switch events might be very
long. This disparity in event length is illustrated in Fig. 4. From this
figure, we can clearly observe that long events are rare, but make up the
majority of measured data labeled as 1, while short events/anomalies
are much more frequent, but only make up a small part of the label 1
data. In order to alleviate this problem while optimizing and evaluating
our methods, we divide the anomaly/switch events in 4 categories
based on their length based on how many samples they consists of,
and calculate all measures, see Section 2.4.1 for each category. The
4 categories of event lengths are defined as: 1 up to and including 24
samples, 25 up to including 288 samples, 289 up to and including 4032
samples, and 4033 samples and longer. From here on out we will refer
to these, for sake of clarity, as their equivalents in time units: 15 min
to 6 h, 6 h to 3 days, 3 to 42 days, and 42 days or longer. Roughly
speaking the categories contain the following types of events: 15 min
to 6 h generally contains measurement errors, 6 h to 3 days contains
longer measurement errors and very short switch events that are easily
resolved, 3 to 42 days contains short switch events, as well as more
complex rerouting, and 42 days or longer contains switch events caused
by for example complex rerouting, long-term maintenance, and grid
expansion. It should be noted that this categorization is not set in stone,
and may be chosen slightly differently depending on the prevalence of
event types in other applications.

2.2. Preprocessing

In order to make each time series suitable for further analysis,
several preprocessing steps have been conducted. First, missing 𝑆
measurements and corresponding bottom-up loads are removed from
each time series. Missing data can occur when there is a communication
error in the system. Communication errors are typically characterized
by repeated measurements or bottom-up loads. To correct for the
discrepancies between the load measurement and the bottom-up load,
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Fig. 2. A plot of the measured load (𝑆) and the bottom-up load (𝐵) as measured or estimated over the entire year for station 005. The S measurement is visualized in blue,
and the bottom-up load is visualized in orange. The minimum and maximum load estimates are shown by the dashed lines. The load limit of the primary substation is shown
by the dotted line. The green and blue areas indicate the unused and redundant capacity, these are fictitious and only shown for illustrative purposes. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. A plot of the measured load (𝑆) and the bottom-up load (𝐵) as measured or estimated over the entire year for station 010. The S measurement is visualized in blue, and
the bottom-up load is visualized in orange. The minimum and maximum load estimates are shown by the black dashed lines. The load limit of the primary substation is shown
y the dotted line. The true minimum and maximum load limits are shown by the red dashed lines. The capacity that would be incorrectly included in the estimate is shown by
he opaque red boxes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
we perform a linear regression to better match the two. The multipli-
cation term corrects for multiplicative mismatches caused by over- or
nderestimating the amount of load of the customers and the grid losses

that depend on the load (copper-losses), while the additive baseline
orrection corrects for constant grid losses, or iron losses, and, in the

case of a current measurement, for the constant reactive power caused
mainly by the capacitance of the cables. The linear regression is done on
4 
a subset of the time series, specifically by excluding everything outside
user-defined quantiles 𝑞lower% and 𝑞upper%. This is done to prevent that
any anomalies or switch events steer the linear regression. Lastly, we
perform a sign correction on 𝑆 measurements as some measurement
equipment cannot measure load signs. We list the preprocessing steps
as pseudocode in Algorithm 1 in the order in which they are applied to
each individual station measurement, i.e., all 𝐬 ∈ 𝑆 and 𝐛 ∈ 𝐵. Note that
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Fig. 4. Histogram of the length of the events and anomalies over all datasets. Note that the 𝑦-axis is log-scaled due to the frequency of short events. A year typically consists out
of 35 040 15-min interval measurements.
𝐬𝑖 and 𝐛𝑖 are vectors of equal length. The used functions ‘‘bottomUp-
Missing’’ and ‘‘repeatedMeasurements’’ are described in Algorithms 2
and 3 respectively.
Algorithm 1 Preprocessing procedure
1: Input: Measurement 𝐬 and bottom-up load 𝐛
2: Hyperparameters: The maximum number of repeated measure-

ments 𝑟, and the quantile boundaries used for scaling before the
linear fit 𝑞lower%, 𝑞upper%

3: Output: Difference vector 𝜹
4:
5: for 𝑖 ← 1 to 𝑛 do ⊳ Remove missing and repeated measurements
6: if bottomUpMissing(𝑏𝑖) or repeatedMeasurements(𝑠, 𝑖, 𝑟) then
7: Remove 𝑠𝑖 from 𝐬 and 𝑏𝑖 from 𝐛 ⊳ See Algorithms 2 and 3.
8: end if
9: end for

10: 𝜹temp ← 𝐬 − 𝐛 ⊳ Calculate the temporary difference vector
11: 𝑞min ← quantile(𝐬, 𝑞lower%)
12: 𝑞max ← quantile(𝐬, 𝑞upper%)
13: 𝐬filtered ← 𝑠𝑖 ∈ 𝐬 where 𝑠𝑖 > 𝑞min and 𝑠𝑖 < 𝑞max
14: 𝐛filtered ← corresponding elements 𝐛 ∈ 𝐵
15: 𝐬filtered = 𝑚 ⋅ 𝐛filtered + 𝑐 ⊳ Fit linear model to find slope 𝑚 and

offset 𝑐
16: 𝐛scaled ← 𝑚 ⋅ 𝐛 + 𝑐 ⊳ Rescale the bottom-up to match 𝑆
17: ⊳ Correct the sign of 𝐬 if the minimum of 𝑠 is positive while the

minimum of 𝑏 is negative.
18: if min(𝐬) ≥ 0 and min(𝐛scaled) < 0 then
19: 𝐬signed ← 𝐬 ⋅ sign(𝐛scaled)
20: else
21: 𝐬signed ← 𝐬
22: end if
23: 𝜹 ← 𝐬signed − 𝐛scaled ⊳ Calculate the difference vector

As one can note, this procedure has several user-defined hyperpa-
rameters, which can be optimized. These are specifically the range of
5 
Algorithm 2 bottomUpMissing
1: Input: A single bottom-up measurement 𝑏𝑖
2: Output: Boolean 𝛽 indicating whether the bottom-up load

measurement 𝑏𝑖 is missing
3:
4:

𝛽 ←

{

True, if 𝑏𝑖 = NaN
False, otherwise

Algorithm 3 repeatedMeasurements
1: Input: Measurement 𝐬 and index 𝑖
2: Hyperparameters: The maximum number of repeated measure-

ments 𝑟
3: Output: Boolean 𝛽 indicating whether the maximum allowed

number of repeated measurements and adjacent to 𝑠𝑖 is exceeded
4:
5: 𝛽 ← False
6: 𝑐 ← 0 ⊳ Repeated measurement counter
7: max_c← 0
8: for 𝑗 ← max(𝑖 − 𝑟, 0) to min(𝑖 + 𝑟, 𝑛) do ⊳ 𝑛 is the length of the

vector 𝐬
9: if 𝑠𝑗 = 𝑠𝑖 then

10: max_c← max(𝑐 ,max_c)
11: else
12: 𝑐 ← 0
13: end if
14: end for
15: if max_c ≥ 𝑟 then
16: 𝛽 ← True
17: end if

the quantiles, 𝑞lower% and 𝑞upper%, used in the filtering procedure, as
well as the number of 𝐬 measurements, 𝑟, that have to be identical in
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order to be classified as missing due to a communication error. Based on
anual observations of the preprocessing procedure, we have selected

𝑞lower% and 𝑞upper% to be 10% and 90% respectively, and 𝑟 to be 5.
The resulting difference vector 𝜹 is calculated for each primary

ubstation, yielding the set of difference vectors 𝛥, and then used for
urther analysis. 𝜹 now represents the error between the actual mea-
urement and the bottom-up load. Effectively we now have a feature
ector where the variation that can be explained from the bottom-up
oad has been removed from the 𝑆 measurement. This difference vector
s used as input for the various segmentation and anomaly detection
lgorithms we apply, all listed in Section 2.3.

2.3. Algorithms and optimization

In this research, we compare several methods for detecting anoma-
ies and switch events. Each of these takes the difference vector be-

tween the measurement and the bottom-up load 𝜹𝑖 ∈ 𝛥 as input data.
The output of each base method is a vector of unbounded scores for
each primary substation 𝐳𝑖, thus yielding a set of score vectors 𝑍. These
scores are subsequently converted to predicted binary label vectors for
each primary substation �̃�𝑖, yielding a set of predicted label vectors 𝑌 .
This is done by thresholding the scores, on which more details can be
ound in Section 2.4.3.

We specifically make use of unsupervised anomaly detection algo-
rithms. Unsupervised algorithms do not learn from labeled data, but
only consider the measurements. We have annotated a fairly large num-
ber of 180 yearly primary substation measurements, but recognize that
anomalies and switch events are very rare and heterogeneous events.
Because of this, we applied unsupervised methods of detection. We then
assume that some higher level hyperparameters of the unsupervised
procedure, specifically the thresholds used for acquiring labels, will
generalize towards unobserved types of anomalies and switch events,
we will evaluate this assumption on the test set.

We have applied 3 base detectors, specifically statistical process
control, isolation forest, and binary segmentation, and describe them
in Section 2.3.1. We compare these detectors separately, but also
nsemble them by combining them in several ways. We compare a
aive ensemble method, a distinct optimization criterion ensemble, and
 sequential ensemble, which we describe in Section 2.3.2.

2.3.1. Base detectors
Statistical process control. Under the assumption that the data is station-
ary we can use classical statistical process control, or SPC, methods [30]
n order to detect anomalies and switch events. In traditional SPC one

assumes a process which is stationary within a chosen time frame
or segment. Then, the user defines certain lower and upper control
limits, typically 2 or 3 standard deviations away from the mean of
the segment. In our case, the control limits will be optimized as either
ymmetric or asymmetric thresholds, rather than using the traditional

statistical approach. Additionally, due to the known presence of anoma-
lies in the data, we also look at the distance to the median, rather
than to the mean. We will explicitly refer to the optimized control
limit as ‘‘threshold’’ from here on out. When a time point falls outside
of these control limits, it is flagged as out-of-control, in this case
meaning anomalous. How SPC is applied to each difference vector 𝜹 ∈ 𝛥
resulting from preprocessing is described in Algorithm 4

It should be noted that the relevant hyperparameters here are the
quantiles that are chosen for the interquantile range. These can be
distinct from the quantiles hyperparameters used in the preprocessing
procedure.
6 
Algorithm 4 Statistical process control
1: Input: Difference vector 𝜹
2: Hyperparameters: Quantile boundaries for scaling 𝑞lower%, 𝑞upper%
3: Output: Score vector 𝐳
4:
5: 𝑚 ← median(𝜹) ⊳ Calculate median
6: 𝑑 ← interquantileDistance(𝜹, 𝑞lower%, 𝑞upper%) ⊳ Calculate

interquantile distance
7: 𝐳 ← (𝜹 − 𝑚)∕𝑑

Isolation forest. One of the most commonly used machine learning
methods for anomaly detection is the isolation forest, or IF [31]. The
isolation forest is known as one of the best state-of-the-art anomaly
etectors on real-valued static data [32]. An isolation forest on one-

dimensional data effectively produces a density estimate by randomly
splitting subsets of the data. We consider two distinct ways of applying
isolation forests on the data: one where we apply a single forest per
station difference vector, see Algorithm 5, and one where we scale
nd concatenate all difference vectors for training the isolation forest
nd apply that isolation forest on each difference vector, see Algorithm

6. Note that in these algorithms, we use several high-level functions.
‘‘fitPredictIsolationForest’’ fits an isolation forest with 𝑛estimators trees
on the input 𝜹 and returns the anomaly scores �̃� on the same input.
‘‘fitIsolationForest’’ fits an isolation forest with 𝑛estimators trees on the
input 𝜹 and returns the fitted model 𝛾. ‘‘predictIsolationForest’’ returns
the anomaly scores �̃�𝑖 calculated over 𝜹𝑖scaled given an already fitted
isolation forest 𝛾. Each of these functions is implemented as part of
the scikit-learn library [33].
Algorithm 5 Isolation forest per station
1: Input: Difference vector 𝜹
2: Hyperparameters: The number of trees 𝑛estimators
3: Output: Score vector 𝐳
4:
5: �̃� ← fitPredictIsolationForest(𝜹, 𝑛estimators)
6: 𝐳 ← −�̃� + 1 ⊳ Rescale so higher score means more anomalous

Algorithm 6 Single isolation forest over all stations

1: Input: Difference vectors 𝜹𝑖 ∈ 𝛥 for each station
2: Hyperparameters: The number of trees 𝑛estimators, quantile bound-

aries for scaling 𝑞lower%, 𝑞upper%
3: Output: Score vectors 𝐳𝑖 ∈ 𝑍 for each station
4:
5: for 𝜹𝑖 ∈ 𝛥 do
6: 𝑚 ← median(𝜹𝑖)
7: 𝑑 ← interquantileDistance(𝜹𝑖, 𝑞lower%, 𝑞upper%)
8: 𝜹𝑖scaled ← (𝜹𝑖 − 𝑚)∕𝑑
9: end for

10: 𝛥scaled ← {𝜹𝑖scaled, ..., 𝜹𝑛scaled}
11: 𝛾 ← fitIsolationForest(𝛥scaled, 𝑛estimators)
12: for 𝜹𝑖scaled ∈ 𝛥scaled do
13: �̃�𝑖 ← predictIsolationForest(𝛾 , 𝜹𝑖scaled)
14: 𝐳𝑖 ← −�̃�𝑖 + 1 ⊳ Rescale so higher score means more anomalous
15: end for

In either procedure, we need to set the hyperparameters of the
solation forest. In the case where a single isolation forest is applied,
e also consider the quantile boundaries for scaling. Furthermore,

the choice between fitting a single forest or a forest per station is
treated as a hyperparameter. We perform rescaling of the scores so
that the algorithms deems the most anomalous samples to have the
highest scores. These definitions differ between different algorithms in
literature, but we chose this definition to be analogous to SPC, allowing

for a similar threshold optimization strategy.
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Binary segmentation. Binary segmentation is a change point detection
algorithm able to find multiple change points in a given time series [34,
35]. We use binary segmentation as a state-of-the-art change point algo-
rithm because it is found to be one of the best performing algorithms on
real-world univariate time series data [36–38]. It finds change points
by recursively partitioning the time series into two parts, forming a
inary tree. A split occurs at the optimal break point. This break point
s found by first calculating the cost 𝑐total of the entire segment using a
hosen cost function. Then the costs of the two subsegments, 𝑐left and
right, are calculated for each possible break point using the same cost

function. The optimal break point is then found by selecting the one
for which the gain, 𝑔 = 𝑐total − 𝑐left − 𝑐right is maximized. This procedure
is repeated until the gain for a split is below a user-defined threshold
called the penalty 𝑝. In our experiments, we consider two penalties, a
linear and a L1 penalty [36], the scaling of which depends on a user
defined 𝛽 parameter.

We use binary segmentation in order to generate scores by per-
forming the following procedure explained in Algorithm 7. The ‘‘find-
ReferenceValue’’ function is described in more detail in Algorithm 8.
The ‘‘findBreakpointsBinarySegmentation’’ is a call to the high-level
‘ruptures’’ Python library [39] which takes the scaled vector �̃� and
egments it according to the well-known binary segmentation algorithm
ith hyperparameters 𝛽 , 𝐶 , 𝑙, and 𝑗.

Algorithm 7 Binary segmentation
1: Input: Difference vector 𝜹
2: Hyperparameters: Cost function 𝐶, cost function weight 𝛽, mini-

mum segment size 𝑙, the jump size 𝑗, quantile boundaries for scaling
𝑞lower%, 𝑞upper%, and the reference point strategy reference_point

3: Output: Score vector 𝐳
4:
5: 𝑚 ← median(𝜹)
6: 𝑑 ← interquantileDistance(𝜹, 𝑞lower%, 𝑞upper%)
7: �̃� ← (𝜹 − 𝑚)∕𝑑
8:
9: 𝐛 ← findBreakpointsBinarySegmentation(�̃�, 𝛽 , 𝐶 , 𝑙 , 𝑗)

10: 𝑟 ← findReferenceValue(�̃�,𝐛, reference_point)
11: 𝑏begin = 1 ⊳ indexing begins at 1
12: for 𝑏end ∈ 𝐛 do
13: 𝐭 ← (�̃�𝑖)𝑏begin≤𝑖≤𝑏end ⊳ Get segment
14: (𝐳𝑖)𝑏begin≤𝑖≤𝑏end ← mean(𝐭) − 𝑟 ⊳ Get difference between segment

and reference value
15: 𝑏begin = 𝑏end
16: end for

This procedure has a large number of optimizable hyperparameters
resulting from the binary segmentation algorithm, the strategy for de-
termining the reference point, and with which quantiles scaling should
e applied. We have compared 4 different strategies for determining

the reference point: (1) comparing to the mean of the entire scaled
station difference vector (‘‘𝑚𝑒𝑎𝑛’’), (2) comparing to the median of the
entire scaled station difference vector (‘‘𝑚𝑒𝑑 𝑖𝑎𝑛’’), (3) comparing to the
mean of the longest segment (‘‘𝑙 𝑜𝑛𝑔 𝑒𝑠𝑡_𝑚𝑒𝑎𝑛’’), and (4) comparing to
the median of the longest segment (‘‘𝑙 𝑜𝑛𝑔 𝑒𝑠𝑡_𝑚𝑒𝑑 𝑖𝑎𝑛’’).

2.3.2. Ensembles
The different base detection algorithms have various strengths and

eaknesses. Specifically, binary segmentation is good at detecting long
events, while SPC and IF are good at detecting shorter events. Binary
segmentation more easily detects long events as it can compare the
distance of an entire segment to the distance of a different segment,
thus being more sensitive to small changes over a long time period.
SPC and IF consider each timepoint individually, thus only detecting
large changes without considering the time component. In order to
everage the strengths of multiple complementary methods, we employ

ifferent ensembling techniques to combine base detection algorithms.

7 
Algorithm 8 findReferenceValue
1: Input: Scaled difference vector �̃�, and breakpoints resulting from

binary segmentation 𝐛
2: Hyperparameters: Reference point strategy reference_point
3: Output: Reference point value 𝑟
4:
5: if reference_point = ‘‘mean’’ then
6: 𝑟 = mean(�̃�)
7: else if reference_point = ‘‘median’’ then
8: 𝑟 = median(�̃�)
9: else if reference_point = ‘‘longest_mean’’ then

10: 𝑠max = 0
11: 𝑏begin = 1 ⊳ indexing begins at 1
12: for 𝑏end ∈ 𝐛 do
13: 𝐭 ← (�̃�𝑖)𝑏begin≤𝑖≤𝑏end ⊳ Get segment
14: 𝑠𝑖 ← 𝑏end − 𝑏begin ⊳ Get segment size
15: if 𝑠𝑖 > 𝑠max then
16: 𝑠max = 𝑠𝑖
17: 𝑟 = mean(𝐭)
18: end if
19: 𝑏begin = 𝑏end
20: end for
21: else if reference_point = ‘‘longest_median’’ then
22: 𝑠max = 0
23: 𝑏begin = 1 ⊳ indexing begins at 1
24: for 𝑏end ∈ 𝐛 do
25: 𝐭 ← (�̃�𝑖)𝑏begin≤𝑖≤𝑏end ⊳ Get segment
26: 𝑠𝑖 ← 𝑏end − 𝑏begin ⊳ Get segment size
27: if 𝑠𝑖 > 𝑠max then
28: 𝑠max = 𝑠𝑖
29: 𝑟 = median(𝐭)
30: end if
31: 𝑏begin = 𝑏end
32: end for
33: end if

We specifically compare naive ensembling through combining predic-
ions directly, combining algorithms optimized on detecting events of

different lengths, and sequential ensembles, where we apply binary
segmentation and apply SPC or IF only on the ‘‘normal’’ segments. A
more detailed description of each ensembling strategy can be found
elow. For all ensembles, we look at a combination of a change point
etector, binary segmentation, and an anomaly detector, which is
ither SPC or IF. As both SPC and IF are designed to find singular

anomalies, we see them as complementary to binary segmentation, and
will specifically compare SPC to IF.

Naive ensembles. The simplest way of combining base detection al-
gorithm predictions is by what we call naive ensembling. In naive
ensembling, we simply take the predictions of each base detection
algorithm, and combine them using an OR operation, meaning when
ither algorithm predicts an anomaly or switch event, so does the
nsembled prediction.

Different optimization criterion ensembles. As noted earlier, it is known
that binary segmentation is good at detecting long events, while SPC
nd IF are good at detecting shorter events. By simply combining
redictions as in naive ensembling, the individual strengths of the
ub-models are not leveraged to their fullest extent. We can instead

optimize both detection models on different criteria. In this case, we
have optimized binary segmentation to detect longer events in the ‘‘3
to 42 days’’, and ‘‘42 days and longer’’ length categories, whereas we
optimize either SPC or IF on the ‘‘15 min to 6 h’’, and ‘‘6 h to 3
days’’ length categories. Then, like in naive ensembling, we combine
the predictions of both separately optimized algorithms using an OR
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operation. Due to the specific optimization we expect this method to
find fewer false positives and have a higher recall. For clarity’s sake,
we will abbreviate this type of ensemble as DOC, Different Optimization
Criterion, ensembles.

Sequential ensembles. Sequential ensembles follow the same idea of
sing differently optimized detectors. In a sequential ensemble we first
pply binary segmentation optimized on the ‘‘3 to 42 days’’, and ‘‘42
ays and longer’’ length categories. Then, all segments that were not
lassified as switch events are passed to a second detection algorithms,
ither SPC or IF, to detect shorter events and anomalies. The second
ethod is again optimized for detecting the shorter event categories

‘15 min to 6 h’’, and ‘‘6 h to 3 days’’. Due to the further specificity
f this method, we expect to find fewer false positives, and to have a
igher recall, especially on the shorter events which are no longer being
asked by long switch events.

2.4. Evaluation and optimization

2.4.1. Evaluation metrics
Typically, time series segmentation is evaluated using precision,

recall, the ROC/AUC, and the F𝛽 score [37,38]. In this research, we
focus on a weighted approach of the precision, recall, and the F𝛽 score.
Rather than calculating them directly on a sample-to-sample basis, we
calculate them for each of the 4 defined length categories. We do this so
we can accurately detect events across the entire spectrum of lengths,
as the number of measurements of events in each category increases
greatly for increasing event lengths. For each of the length categories,
we calculate the precision, recall, and the F1.5 score. We use 𝛽 = 1.5
to give a higher importance to the recall term, as the potential impact
of a false negative is higher than that of a false positive in power grid
expansion planning. When we calculate a score for a length category,
we do not include timestamps where either the assigned label is 5
(‘‘uncertain’’), or where the assigned label is 1 for any of the other
categories. In order to get an estimate of the overall performance of
the model, we average these measures over the four categories. The
metric used to optimize any (hyper)parameter is the average F1.5 score
over all 4 length categories. We explicitly choose to study the precision,
recall, and the F𝛽 scores. In the practical use case we describe, the
predictions are always binary, even though they are based on real-
valued scores. As we explicitly threshold the scores to labels in order
to filter our data, the precision, recall, and the F𝛽 score most closely
illustrate the performance trade-off that is being made by thresholding.
While we do not explicitly study the ranking of the anomalies and
switch events, as is commonly done by the ROC/AUC metric, we do
provide an additional plot of the performance in terms of the ROC/AUC
in Appendix B.

2.4.2. Validation
In order to optimize thresholds, hyperparameters and to compare

odels, we split our original dataset consisting out of 180 stations into
 equal parts of 60 stations each, creating a training, validation, and
est dataset. This splitting procedure was done in a stratified manner

such that the three splits have a more or less equal distribution of event
lengths. The stations were divided by aiming to have an equal number
f events for each category present in each dataset. The computational
omplexity of evaluating all possible combinations, like is done in
vailable cross-validation software, is too high. We have therefore used
 greedy approach to produce a stratified split of the data, where
tations were divided starting with the longest, and least frequent,
vent length category, and ending with the shortest and most frequent
vent length category. All stations with no events were subsequently
ivided amongst the datasets in order to create 3 equally large datasets.

The number of events, as well as the label ‘‘1’’ counts, can be found in
Table 1.

From this table we can observe that the splitting of events in the
longer categories is fairly balanced, whereas there is some imbalance in
8 
Table 1
The distribution of event lengths over the train, test, and validation splits. The event
count indicates how many events within that category are in a dataset. The label ‘‘1’’
ount indicates how many separate time points belong to the anomaly/switch event
lass per dataset.

Dataset 15 m–6 h 6 h–3 d 3 d–42 d 42 d and longer

Event count Train 338 136 24 4
Validation 203 173 25 4
Test 444 99 23 4
All 985 408 72 12

Label 1 count Train 1506 6 290 28 386 28 212
Validation 1971 13 974 25 075 30 904
Test 2262 6 790 27 389 24 992
All 5739 27 054 80 850 84 108

the shorter event categories. Even though the data is split in a stratified
manner, such an imbalance can occur when single stations have a lot of
events. This imbalance is most notable in the validation set, which has
fewer ‘‘15 min to 6 h’’ events, but more ‘‘6 h to 3 days’’ events. Because
these two categories are optimized on together, even within ensembles,
we argue that this imbalance does not affect our conclusions.

After splitting, the train set is used to optimize the thresholds and
train the isolation forest or just optimize the thresholds. The validation
set is used to select the best performing hyperparameters for each
method. Lastly, the test set is used to compare methods using only the
best performing hyperparameters as evaluated on the validation set.

To get an estimate of the reliability of each method, we perform
ootstrapping [40]. We do so by resampling the test set stations with

replacement 10,000 times. In this way, we acquire both a bootstrapped
mean and standard deviation for the precision, recall, and F1.5 metrics.

2.4.3. Threshold optimization
All methods we have applied produce scores 𝐳 ∈ 𝑍. These can

ither be positives scores, where a higher value indicates a higher
ikelihood for a sample to be an anomaly or switch event according
o the model, or scores centered around 0, where a greater distance
o 0 indicates a higher likelihood. Of the presented methods, isola-
ion forest has a purely positive score, while the statistical process
ontrol and binary segmentation scores are centered around 0. These
cores are thresholded to yield a label prediction vector �̃� ∈ 𝑌 .
his is done by applying a one-sided or symmetrical approach, �̃� =
hresholdScores(abs(𝐳), 𝜃symmetrical), or a two-sided or asymmetrical ap-
roach, �̃� = thresholdScores(𝐳, 𝜃lower, 𝜃upper). The symmetrical approach
an be used on both positive and zero-centered scores, whereas the
symmetrical approach can only be used on the zero-centered scores.
seudocode for the one-sided approach can be found in Algorithm 9,

and for the two-sided approach in Algorithm 10.

Algorithm 9 thresholdScores (one-sided)
1: Input: A score vector 𝐳, where a higher 𝑧𝑖 indicates a higher

likelihood of being an anomaly/switch event
2: Hyperparameters: A threshold 𝜃symmetrical

3: Output: Predicted label vector �̃�
4: for 𝑧𝑖 ∈ 𝐳 do
5:

�̃�𝑖 ←

{

1, if 𝑧𝑖 ≥ 𝜃symmetrical

0, otherwise

6: end for

The thresholds are optimized by selecting those thresholds for which
the average of the F1.5 over all 4 segment length categories is highest.
This can be done efficiently by calculating the F1.5 score for each
possible threshold value for all distinct segment length categories, and
then averaging these profiles. An illustration of this selection procedure
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Fig. 5. Plot of the one-sided threshold optimization procedure. The F1.5 score, on the 𝑦-axis, as a function of the threshold, on the 𝑥-axis, is shown for all four distinct segment
length categories, as well as their average. The red vertical line indicates the selected threshold which maximizes the F1.5 score on the average.
a

h

e
m
o
p

l
t
t
S
c
u
b

e

Algorithm 10 thresholdScores (two-sided)
1: Input: A score vector 𝐳, where a high or low 𝑧𝑖 indicates a higher

likelihood of being an anomaly/switch event
2: Hyperparameters: A lower threshold 𝜃lower, and upper threshold

𝜃upper

3: Output: Predicted label vector �̃�
4: for 𝑧𝑖 ∈ 𝐳 do
5:

�̃�𝑖 ←

⎧

⎪

⎨

⎪

⎩

1, if 𝑧𝑖 ≥ 𝜃upper

1, else if 𝑧𝑖 < 𝜃lower

0, otherwise

6: end for

for the symmetrical approach can be found in Fig. 5. We can formal-
ze this optimization as finding that threshold 𝜃, or those thresholds
lower, 𝜃upper, abbreviated as 𝜃l, 𝜃u, that maximize the average F1.5
core

𝜃optimal = arg max
𝜃

F1.5average(𝑌 , thresholdScores(abs(𝑍), 𝜃))

in the symmetrical case, or

𝜃l
optimal, 𝜃u

optimal = arg max
𝜃l ,𝜃u

F1.5average(𝑌 , thresholdScores(𝑍 , 𝜃l, 𝜃u))

in the two-sided case.
Whether to use one- or two-sided optimization is treated as a

hyperparameter in the evaluation and selection process.

2.5. Implementation and reproducibility

Our analysis has been done in the Python programming language,
specifically version 3.10.0. Many of our calculations rely on NumPy
[41] and Pandas [42]. We furthermore make use of the Ruptures [39]
ackage for binary segmentation, and use the Scikit-learn [33] pack-

age for scaling procedures, as well as applying the isolation forest.
Visualizations were made using the Seaborn [43] and Matplotlib [44]
9 
packages. In order to reproduce all our experiments, we have provided
ccess to a public GitHub repository.1 This reproduces the data splitting

procedure, all experiments, including hyperparameter optimization, as
well as producing all figures and tables in this paper. All data is pro-
vided through Alliander.2 An overview of all evaluated, and optimal,
yperparameters can be found in Appendix A.

3. Results

After evaluating each method on the validation set, we have selected
for each method and ensembling combination the model with the best
performance on the validation set. Each of these models was then
valuated on the test set to get an estimate of how well optimized
odels perform on unseen data. The resulting performance in terms

f the F1.5 is visualized in Fig. 6. From this figure we can observe the
erformance of the three base learners, as well as the effectiveness of

the ensembling strategies when applied to different combinations.
We find that IF and SPC perform similarly across the board. This

is partially to be expected, as they are designed to find short anoma-
ies/events that are rare compared to normal data. IF, however is able
o more easily model multimodal distributions and detect anomalies in
he presence of multimodality. Since IF does not noticably outperform
PC, it seems that it cannot leverage this advantage. This is further
orroborated by visualization of typical scaled data, which is mostly
nimodal. both IF and SPC are able to detect short anomalies/events
etter than binary segmentation, achieving a F1.5 score of approx-

imately 0.2 for both the ‘‘15 min to 6 h’’, and ‘‘6 h to 3 days’’
vent length categories. Perhaps surprisingly, these methods are able

to detect some of the longer switch events as well, achieving just below
0.3 F1.5 scores. The relatively good performance on these longer events
can be easily explained. Many of the longer switch events have a larger
distance to the 𝜹 median than normal data. SPC is therefore able to
detect these events based on this distance, while IF identifies them be-
cause these switch events occupy a lower density region where they are

1 The Git repository can be found at: https://github.com/RoelBouman/
StormPhase2.

2 The data repository can be found at https://www.liander.nl/over-ons/
open-data

https://github.com/RoelBouman/StormPhase2
https://github.com/RoelBouman/StormPhase2
https://www.liander.nl/over-ons/open-data
https://www.liander.nl/over-ons/open-data
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Fig. 6. From top to bottom: bar plots of the results of each method per length category for the F1.5, recall, and precision respectively. The height of each bar indicates the
verage score over the bootstrap iterations. The error bars indicate the standard deviation resulting from the bootstrap resampling.
F

i

not masked by normal data. We find that even when ensembled in any
f the three tested manners, IF offers no significant performance boost
ver SPC. Due to the ease of interpretability of SPC, it is preferable over
F.

Binary segmentation is found to be much better at detecting longer
vents than either SPC or IF. The longer the event, the better binary
egmentation will perform, as can be seen from the performance on
he longest category, which nears a F1.5 score of 0.5. It is also clear

that binary segmentation fails to detect most short events/anomalies,
chieving near random baseline F1.5 scores.

The results from the naive and different optimization criterion
(DOC) ensembles are less obvious. Both methods perform similarly,
and the different optimization criterion addition does not significantly
improve overall model performance. Perhaps surprisingly, the F1.5
10 
score for the two shorter event length categories is only marginally
better than that of binary segmentation. Indeed, ensembling binary
segmentation with a detector for shorter events barely increases the
1.5 score. This can be explained when we consider the two terms

making up the F𝛽 score: precision and recall. When ensembling using
an OR operation, we expect the recall to always increase, as we will
only classify more samples in category ‘‘1’’. The precision, however,
will generally decrease, as more false positives will be found. Indeed,
when looking at the performance in terms of recall and precision, which
we have visualized in Fig. 6, we can readily observe that the recall only
ncreases or stays the same when ensembling. From this we conclude

that the number of false positives introduced by OR ensembling causes
simple ensemble methods to underperform.
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Fig. 7. Plot of the results of the best sequential BS+SPC model on station ‘‘042’’ contained in the test set. The blue line indicates the inputted difference vector 𝜹. The thresholds
ound by the initial BS pass are indicated by vertical dashed lines. The SPC segment medians and the BS overall mean used to calculate difference with the reference point are

indicated by purple and orange lines. The boundaries for classification are indicated by either dotted or dashed lines for BS and SPC respectively. True positives, false positives
and false negatives are visualized by changing the background color to green, yellow, or blue respectively. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
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Sequential ensembles seemingly do not suffer from this increase in
false positives as much. We can see that sequential ensembles nearly
match the performance of the individual SPC and IF detectors in the
single categories where they perform best, while the performance in the
‘‘3 to 42 days’’ category is significantly better than any base detector or
other ensemble. The performance in the longest category is comparable
to that of the other ensembles. Sequential ensembles indeed outperform
any base detector or other ensembling method. While intuitively one
might think the performance increase in the shorter categories should
be similar to other ensembling strategies, it seems that due to the
sequential nature, we can optimize more on precision than is the case
in other ensembles. This can also be observed in Fig. 6, where we see
hat the recall of the sequential models is lower in the longest category,

while being similar in the other three. This means that all performance
increases from naive or DOC ensembles to sequential can be attributed
to a higher precision, which is confirmed by Fig. 6.

To further study the behavior of one of the sequential ensembles,
pecifically the combination of BS and SPC, we have visualized one of
he station difference vectors together with the predictions, thresholds,
nd reference points from both components of the sequential ensemble
n Fig. 7. From this figure we can observe several qualities, as well
s failings, of the sequential ensembling approach. Most prominent is

the correct classification of the switch event on the far right of the
figure. Binary segmentation was able to correctly classify this. Also
correctly detected are the 3 shorter events/anomalies to the left of the
figure, which SPC has detected due to their large negative contribution.
However, some mistakes are made by the method. Specifically some
false positives arise in the middle of the figure, where some points
fall just outside the detection boundaries. Then, on the right in the
second segment, there is a mix of true positives and false negatives.
Due to the variability of the signal, only a few time points within this
event are accurately detected by SPC. Lastly, one could argue that the
second segment in its entirety should have been classified as a switch
event. Yet, this was neither done by the domain expert, nor by the
binary segmentation algorithm. Upon closer inspection, we found that

the information in the load measurement and the bottom-up load is
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insufficient to fully determine whether this was a switch event. From
his, and other observations on similar stations, we are led to conclude
hat further improvements can be made by including more metadata in

future endeavours to improve our algorithms. This is further reinforced
by the performance of all methods, which is relatively low across
he board, even on the train data. This indicates that the problem
s hard to learn, though it generalizes fairly well. Additionally, with
hese visualizations, we show that these models, even when ensembled,
re exceedingly interpretable, solidifying their use in applications of
ocietal importance.

In order to gain more insight into how the proposed filtering ap-
proach works for automatically acquiring load estimates, we have
plotted the ground truth load estimates against the predictions or
unfiltered load estimates in Fig. 8 for the maximum load estimates, and
in Fig. 9 for the minimum load estimates. In these figures, a perfect
prediction would lead to all points lying on the diagonal. As can be
een, when we do not apply any filtering approach on the data, the
inimum and maximum load values are highly inflated, leading to a

300% increase at worst. A lot of potential grid capacity is unused when
the measurements remain unfiltered and are being considered normal
behavior. When we apply binary segmentation, we correctly predict
some of the minimum and maximum loads, but still miss many while
at the same time making the mistake of vastly underestimating the
minimum and maximum load in a single case. With statistical process
control the filtering procedure is much better, but we still have the
worst case scenario of a 300% increase in maximum load prediction. By
combining both using sequential ensembling, we leverage the strengths
of either method, reducing the worst case scenario to an approximately
200% increase, and having only a single additional underestimation in
the minimum load estimates. To further zoom in on the performance,
we can see how well the method performs within certain error margins.
The maximum load predictions are perfect in 75.00%, and within a
10% margin in 88.33% of all cases. The minimum load predictions are
perfect in 86.96% and within a 10% error margin in 91.30% of all cases.

Due to the high performance of our ensemble method for load
estimation it has been adopted for use within Alliander. Previously,
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Fig. 8. Scatter plots where the ground truth maximum load estimate (in kW on x-axis) is plotted against the predicted maximum load estimate (in kW on y-axis). From top-left to
ottom-right are shown the estimates resulting from: no filtering, the best Binary Segmentation (BS) model, the best Statistical Process Control (SPC) model, and the best Sequential
inary Segmentation + Statistical Process Control ensemble. When a point is above the 𝑦 = 𝑥 line, too few points are filtered out, when the point is below, too many points are
iltered out.
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all filtering and load estimates were done by hand. This was a time-
onsuming process, taking a month of time for several full-time em-
loyees. This was done once a year to acquire the load estimates for
uture planning and operations management. Earlier variations of the
resented methodology have been in use since 2021, fully replacing
he manual, time-consuming, process. In addition to replacing time-
onsuming manual labor of domain experts whose expertise is better
tilized elsewhere, our methodology allows for easier updating of load
stimates, which can now be generated on-the-fly. We hope that by
pen sourcing our methodology, code, and data other distribution
ystem operators can benefit similarly.

4. Discussion

This paper showcases a novel combination of change point detection
and anomaly detection algorithms for acquiring better load estimates.
While the considered algorithms demonstrate good performance, we
envision several possible improvements of the proposed method in the
future
12 
Firstly, in some cases, just looking at the difference between load
measurement and bottom-up load is not enough to determine the
round truth. Additional information or metadata is needed for accu-
ate segmentation, for example one could use a separate detector for
eeing whether the load or bottom-up is incorrect, and incorporating
his as a rule-based detector. We estimate that we could improve
erformance by using additional rule-based detectors on top of our
urrent method.

Secondly, the datasets have a somewhat skewed distribution of
events, meaning not all categories are equally represented in each
dataset, as can be glanced from Table 1. Due to this imbalance, as well
s the general heterogeneity of events, we observe that the datasets are
ot as indistinct as they ideally would be. By labeling more stations we

might be able to alleviate this problem. As labeling data is costly, the
gains of this procedure might however not be worth the investment.
Specifically over 500 primary substations are measured, which is un-
feasible to manually label. Furthermore, events and anomalies are rare,
and only a finite number of these occurs during any given year, which
means that data acquisition and labeling for several more years might
be needed to get fully balanced data.
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Fig. 9. Scatter plots where the ground truth minimum load estimate (in kW on x-axis) is plotted against the predicted minimum load estimate (in kW on y-axis). From top-left to
bottom-right the figure shows the estimates resulting from: no filtering, the best Binary Segmentation (BS) model, the best Statistical Process Control (SPC) model, and the best
Sequential Binary Segmentation + Statistical Process Control ensemble. Minimum load estimates are only shown for those stations that have measurements with a negative sign
(23/60). When a point is above the 𝑦 = 𝑥 line, too many points are filtered out, when the point is below, too few points are filtered out.
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Our current method relies heavily on the bottom-up loads which
are used to attain the difference vector 𝜹. The accuracy of the bottom-
p load varies between stations, leading to a high variability between

stations in terms of variance. We correct for this using the robust
scaling procedure, but it remains a critical step in the total analysis
pipeline. When the bottom-up load is not available, for example due to
nomalous situations in the grid, or when wanting to apply this method
n old historical data, our methodology cannot be directly applied.

The current analysis considers one year of measurements for one
station at a time. This is in line with the labeling procedure used by
the grid operator prior to this research, where the data was labeled by
hand during the first month of the year. As load estimates are used
in long-term decision making, generally the speed of acquisition is not
that important. However, should the availability of more recent load
stimates be prioritized, the binary segmentation algorithm, which only
orks on static data, will need to be replaced by an online change point
etection algorithm.

The methods employed for the change point and anomaly de-
tection are all highly interpretable and fairly easily comprehensible.
 o

13 
In recent years, machine learning has been widely applied in high-
performance applications on time series. Examples are LSTM’s for
anomaly detection [45], and Meta’s (formerly Facebook’s) Prophet [46]
for simultaneous anomaly and change point detection. While promis-
ing, these methods would not be readily usable on this application.

hese methods require far more data than the unsupervised methods
used in this research, something which is unfeasible due to time of
data acquisition. While these methods can be trained on the unlabeled
time series, we still need labels for hyperparameter optimization. Using
the model with the best predictions does not guarantee the best model
for event detection, as an overparametrized model might learn to
predict anomalies. Furthermore it has been shown that in many cases
simple solutions work better than complex ones for time series anomaly
detection [47].

We show that our automatic filtering and load estimate procedure
orks in most cases, but there are still some failures cases. Future
ork could include studying these failure cases and devising detection

methods for this purpose. Increasing the amount of data is expected to
urther increase performance. Furthermore, incorporating information
f previous yearly measurements might lead to additional robustness
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Table A.2
Evaluated hyperparameters for each method.

Method Hyperparameter Hyperparameter values

IF per station 𝑛estimators 1000
Threshold strategy [Symmetrical]

IF over all stations
𝑛estimators 1000
(𝑞lower%, 𝑞upper%) [(10, 90), (15, 85), (20, 80)]
Threshold strategy [Symmetrical]

SPC (𝑞lower%, 𝑞upper%) [(10, 90), (15, 85), (20, 80)]
Threshold strategy [Symmetrical, Asymmetrical]

BS

𝛽 [0.005, 0.008, 0.015, 0.05, 0.08, 0.12]
𝑙 [150, 200, 288]
𝑗 [5, 10]
(𝑞lower%, 𝑞upper%) [(10, 90), (15, 85), (20, 80)]
𝐶 [L1]
𝑟𝑒𝑓 𝑒𝑟𝑒𝑛𝑐 𝑒_𝑝𝑜𝑖𝑛𝑡 [mean, median, longest_median, longest_mean]
Threshold strategy [Symmetrical, Asymmetrical]
V
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of the filtering procedure. For example, a rule-based system could
detect large differences in load estimates between years on top of the
presented models, while still allowing for the full interpretability.

It should be noted that while figures like Fig. 7 can be interpreted
fairly easily, it is not immediately clear why the thresholds are chosen
like they are. One could change the thresholds for this figure and
achieve a better filtering. When interpreting these figures, one should
always note that the thresholds are optimized to find the best F1.5 score
over all stations, rather than the single figure shown.

5. Conclusion

Based on our research we present interpretable methodology for the
automatic filtering of anomalies and switch events from load measure-
ments in order to establish more accurate load estimates.

We posit that using unsupervised methods, with supervised opti-
ization of hyperparameters and the threshold parameters, based on

he F1.5 score, allows for robust, well-generalizing, performance on
nseen data.

We show that without filtering, a lot of grid capacity is left unused.
n our experiments on unseen test data, comprised of 60 individual
tation measurements, we only observe a single severe failure case in
oth the automatic minimum and maximum load estimate predictions.
f all estimated predictions, approximately 90% fall within a 10% error
argin.

By having compared different methods and ensembling strategies
we find that a combination of the well-known binary segmentation
algorithm for change point detection and the tried statistical process
control method for anomaly detection works best. The best ensem-
bling strategy is a sequential ensemble, where the anomaly detector
is applied after first segmenting the time series based on the obtained
change points. The proposed methods are highly interpretable, a dis-
tinct advantage when this methodology is used in critical infrastructure
planning. This high interpretability is a direct result of each underlying
model being interpretable. SPC and BS are both simple, yet effective
mathematical models. The strategies used for optimization are similarly
straightforward, and can be visualized. Depending on underlying needs
or when business priorities change the chosen threshold(s) for the
algorithms can be adjusted based on the easily translatable precision
and recall measures using figures such as Fig. 5.

We finally identify possible steps for further improvement of the
presented methodology. Incorporating additional data, either for fur-
ther optimization, or as a historical reference, are potential avenues
for improvement. Furthermore, the currently identified failure modes
might be caught by using interpretable rule-based classification without
osing the initial performance of the current algorithms.
14 
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Appendix A. Evaluated and best hyperparameters

An overview of all evaluated hyperparameters can be found in
Table A.2. The best parameters resulting from optimization on the
alidation set for each method-ensembling method combination can be
ound in Tables A.3 and A.4.

Appendix B. AUC-ROC performance of each method

To provide insight into the ranking of the anomalies, so without ex-
plicit thresholding, we provide an additional plot of the area under the
urve of the receiver-operating characteristic (AUC-ROC) in Fig. B.10.

https://primavera-project.com/
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Table A.3
The best parameters resulting from optimization on the validation set for each single method and within the naive ensembles.

Ensemble method Combination Method Hyperparameter Hyperparameter values

No ensemble – IF 𝑛estimators 1000
(𝑞lower%, 𝑞upper%) (15, 85)
Threshold strategy Symmetrical
Optimal threshold(s) 1.265484

SPC (𝑞lower%, 𝑞upper%) (15, 85)
Threshold strategy Symmetrical
Optimal threshold(s) 2.496898

BS 𝛽 0.008000
𝑗 10
𝑙 200
𝐶 L1
(𝑞lower%, 𝑞upper%) (10, 90)
𝑟𝑒𝑓 𝑒𝑟𝑒𝑛𝑐 𝑒_𝑝𝑜𝑖𝑛𝑡 mean
Threshold strategy Asymmetrical
Optimal threshold(s) (−0.4082615619841653, 0.6558452085588331)

Naive BS+SPC BS 𝛽 0.008000
𝑗 10
𝑙 200
𝐶 L1
(𝑞lower%, 𝑞upper%) (10, 90)
𝑟𝑒𝑓 𝑒𝑟𝑒𝑛𝑐 𝑒_𝑝𝑜𝑖𝑛𝑡 mean
Threshold strategy Asymmetrical
Optimal threshold(s) (−0.4082615619841653, 0.6558452085588331)

SPC (𝑞lower%, 𝑞upper%) (15, 85)
Threshold strategy Symmetrical
Optimal threshold(s) 2.496898

BS+IF BS 𝛽 0.008000
𝑗 10
𝑙 200
𝐶 L1
(𝑞lower%, 𝑞upper%) (10, 90)
𝑟𝑒𝑓 𝑒𝑟𝑒𝑛𝑐 𝑒_𝑝𝑜𝑖𝑛𝑡 mean
Threshold strategy Asymmetrical
Optimal threshold(s) (−0.4082615619841653, 0.6558452085588331)

IF 𝑛estimators 1000
(𝑞lower%, 𝑞upper%) (15, 85)
Threshold strategy Symmetrical
Optimal threshold(s) 1.265484
Fig. B.10. A bar plot of the results of each method per length category in terms of the area under the curve of the receiver-operating characteristic (AUC-ROC).
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Table A.4
The best parameters resulting from optimization on the validation set for each method within the DOC and sequential ensembles.

Ensemble method Combination Method Hyperparameter Hyperparameter values

DOC BS+SPC BS 𝛽 0.008000
𝑗 10
𝑙 200
𝐶 L1
(𝑞lower%, 𝑞upper%) (10, 90)
𝑟𝑒𝑓 𝑒𝑟𝑒𝑛𝑐 𝑒_𝑝𝑜𝑖𝑛𝑡 mean
Threshold strategy Asymmetrical
Optimal threshold(s) (−0.4082615619841653, 0.6558452085588331)

SPC (𝑞lower%, 𝑞upper%) (15, 85)
Threshold strategy Symmetrical
Optimal threshold(s) 2.496898

BS+IF BS 𝛽 0.008000
𝑗 10
𝑙 200
𝐶 L1
(𝑞lower%, 𝑞upper%) (10, 90)
𝑟𝑒𝑓 𝑒𝑟𝑒𝑛𝑐 𝑒_𝑝𝑜𝑖𝑛𝑡 mean
Threshold strategy Asymmetrical
Optimal threshold(s) (−0.4082615619841653, 0.6558452085588331)

IF 𝑛estimators 1000
(𝑞lower%, 𝑞upper%) (15, 85)
Threshold strategy Symmetrical
Optimal threshold(s) 1.265484

Sequential BS+SPC BS 𝛽 0.008000
𝑗 10
𝑙 200
𝐶 L1
(𝑞lower%, 𝑞upper%) (15, 85)
𝑟𝑒𝑓 𝑒𝑟𝑒𝑛𝑐 𝑒_𝑝𝑜𝑖𝑛𝑡 mean
Threshold strategy Asymmetrical
Optimal threshold(s) (−0.4888460867656923, 0.8424118235083808)

SPC (𝑞lower%, 𝑞upper%) (10, 90)
Threshold strategy Symmetrical
Optimal threshold(s) 2.237353

BS+IF BS 𝛽 0.008000
𝑗 5
𝑙 150
𝐶 L1
(𝑞lower%, 𝑞upper%) (15, 85)
𝑟𝑒𝑓 𝑒𝑟𝑒𝑛𝑐 𝑒_𝑝𝑜𝑖𝑛𝑡 mean
Threshold strategy Asymmetrical
Optimal threshold(s) (−0.4888460867656923, 0.8447648680436677)

IF 𝑛estimators 1000
(𝑞lower%, 𝑞upper%) (10, 90)
Threshold strategy Symmetrical
Optimal threshold(s) 1.281501
Data availability

The data is available publicly through Allianders open data portal
at www.liander.nl/over-ons/open-data.
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